ANALYSIS OF FAILED, FAILING OR THREATENED SEPTIC SYSTEMS IN THE COASTAL PLAIN

Molly Mitchell Robert Isdell Julie Herman Christine Tombleson

Collaborating with: Division of Data Management and Process Improvement at VDH

Chesapeake Bay Stakeholder Advisory Group August Meeting August 19, 2021

SEA LEVEL RISE AND SEPTIC

SEA LEVEL RISE AND SEPTIC

FAILING SEPTIC SYSTEMS...

- Contribute as much as 6% of the total nitrogen load from the Chesapeake watershed (Bay Watershed Model 2009 Scenario, Chesapeake Bay TMDL)
- In small waterbodies, the local impact can be much higher.
 - For example, in MA, 74% of the nitrogen was attributed to septic systems (Horsley Witten Hegeman. Inc. 1991)
- Contaminated waterbodies result in the closure of shellfish harvest areas → economic impacts
- Can also cause bacterial contamination of groundwater (e.g., Stewart & Reneau, 1981, Arnade 1999)

Miami has estimated the cost of solving their failing septic issues at over \$3 billion! (Miami-Dade County Report Dec 2020)

PROJECT GOAL

- Assess areas of high septic failure
- Consider changes in septic failure rates with changing climate conditions (e.g., sea level rise, increased precipitation)

 Assess impacts of increased septic failures on water quality (under current conditions)

REASONS FOR FAILURES ONLY DATASET AVAILABLE—PERMITS FOR REPAIRS

Human	No known proxies—but
Poor maintenance	humans predictability
Parking on septic field	is low (i.e. no pattern)
Structural	
Age of system (20-40 year lifespan)	Some proxies, but hard to actually know
Type of system	
 Geologic High water table (seasonal or permanent) Low soil permeability 	Potential proxies for evaluation & responsive to changing conditions

UNDERLYING DATA

9 YEARS OF DATA

Statistically analyze the temporal & geospatial distribution of permit repairs to find underlying patterns that could help inform decisionmaking.

CONSIDERING GEOSPATIAL/TEMPORAL PATTERNS

- Consecutive/Persistent hotspots 38% (current issues)
 - Target for sewer systems?
 - Active and continuous monitoring of adjacent waterbodies
- Intensifying hotspots 3% (emerging issues)
 - High risk of failures under increased sea level

Sporadic hotspots 47%

- These are likely due to years of high water table
- They are at high risk of failures under increased precipitation

WATER QUALITY IMPACTS

SEA LEVEL RISE IN VIRGINIA

2020 rate of rise: 5.385 mm/yr

2020 rate of acceleration: 0.131 mm/yr²

Building Addresses

Areas within 3 feet of MSL

Areas_with_3_feet_above_MSLtif Areas within 3 feet of MSL (2080) Areas within 3 feet of MSL (2040)

Areas within 3 feet of MSL (2020)

IMPORTANT POINTS

- All of this data is collected for regulatory/permitting processes, not statistical analysis
- BUT geospatial examination of patterns can allow targeting of monitoring and adaptive actions

NEXT STEPS

- Expand hot spot analysis to the rest of the state
- Use participatory mapping to improve our understanding of potential issues/target areas for mitigation
 Identify potential areas for mitigative issues

Participatory Mapping

04 02

QUESTIONS?

molly@vims.edu